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Thermal n2 + n2 cycloaddition reactions leading to four-membered rings 

are orbital symmetry allowed when they proceed via a single inversion pathway at 

one of the reacting centers. 
1 

In practice, the single inversion pathway is difficult 

to realize. Diradical’ or dipolar3 intermediates are believed to be involved in 

many instances; indeed, alkene dimerizations often involve reactants that bear 

substituents capable of stabilizing diradical or dipolar intermediates. It is antic- 

ipated that thermally induced intramolecular r2 + r2 cycloaddition reactions will 

be similarly influenced by orbital symmetry constraints; examples of these reactions 

however are rare.4 We report here that simple aliphatic polyenes undergo thermal 

rearrangement to products that result from a ‘formal” ~2 + n2 intramolecular 

cycloaddition. Three products are observed when dilute (0.01 M) cyclohexane solu- 

tions of 3,6-dimethylidene-1, 7-octadiene5 (9 are heated to 190 “C. 6 
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Compounds2 and 4_ are stable to the reaction conditions; under these same condi- 

tions compounds is converted to& The reactions are insensitive to added base 

and a change in medium from condensed phase to gas phase produces no more than 

a two-fold difference in rate. 

Formation of compound 3 is consistent with an intramolecular cycloaddition 

reaction, the details of which are outlined in the scheme. Stepwise 1, ‘I-ring closure 

of tetraene 5 produces a diastereomeric pair of resonance stabilized diradicals, 
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2 and%. These intermediates are analogo;ls to the isomeric bisallyl diradicals 

proposed in the dimerization of butadiene . Both diradicals (3 and 3) can collapse 

to bicyclic diene 3 via transannular bond formation across carbons 3 and 6. 

Compound3 is formed from both2 andz; its formation is most economi- 

cally accommodated by proposing a common intermediate or intermediates with 

the necessary symmetry requirement (C,) to accomplish the rearrangement. One 

such possibility is shown in the scheme. Transannular ring closure of 2 across 

carbons 1 and 8 can result in formation of dienez, a 1,5-ethanobridged tm, 

t--l, 5-cyclooctadiene (C3 symmetry). Concerted or stepwise rearrangement 

of 5 tog completes the transformation. We have not yet been able to detect dienez, 

although it is not anticipated that this compound would accumulate to a significant 

extent under the reaction conditions. 

An extension of the proceeding discussion provides an opportunity to explain 

the formation of %. 1,8-Ring closure of tetraene j, can produce bisallyl diradical 

,8_; transannular collapse of3 yields3 direct1y.l \ c / 
1 

e 
4 

Experiments are in progress to detect the proposed intermediate2 and to explore 

the scope of these intramolecular cycloadditions. 
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